Over many years, experience has shown that projects have difficulty in delivering solutions to stakeholders on time, on budget and satisfying needs. The greater the problem complexity, solution complexity, problem novelty, solution novelty and diversity of stakeholders, the greater the challenge has proven to be.

This 5-day course provides in-depth coverage of how to manage engineering projects to maximise project success, within the project’s given constraints. The course establishes principles and provides methods for successfully managing projects, and getting the best out of people, individually and in teams.
Course Objectives

At the conclusion of this course, delegates are expected to have a sound working knowledge of how to go about successfully managing engineering projects, and, after contemplation and consolidation, be ready to take on a systems engineering management role. Delegates will also be better equipped to work in any capacity within projects.

Higher levels of skill and performance in a systems engineering management role will be attained subsequently through practical experience.

Who Should Attend this Course?

This Systems Engineering Management course is designed for personnel of all types who plan, manage, control, specify or support the development or acquisition of products, including software products, or systems.

Course Method and Materials:

The course is delivered using a balanced combination of video, presentations, workshops and discussion sessions. The workshops and discussions are focused on putting into practice the techniques covered in the presentations and the lessons to be learned from the videos.

The workshops are used extensively to reinforce learning and to contribute to the development of understanding.

Delegates are provided with a set of comprehensive course notes covering the presentation material and workshop exercises, a Workshop Workbook, a two-CD CDROM of relevant resources, and other materials and checklists for future reference and use.

Course Availability:

This course is available worldwide for public and on-site delivery (i.e. at client-provided facilities).
1. The Value Proposition for World Class Systems Engineering and Management

2. Introduction to Systems Engineering
 - the concept of system
 - systems thinking
 - system life cycle processes
 - system life cycle models
 - systems-of-systems engineering
 - key features of excellence in systems engineering
 - key features of excellence in management
 - systems engineering principles and concepts
 - overall systems engineering process models
 - concurrent/simultaneous engineering
 - V model, Wedge model, Double-V model, Multiple V model
 - understanding the inputs and the outputs
 - defining the problem — requirements analysis
 - designing the physical solution
 - describing the logical solution — functional and state-based design
 - effectiveness evaluation and decision making
 - requirements specification writing
 - system integration
 - verification
 - validation
 - specialty engineering
 - the role of cognitive systems engineering

3. Introduction to Management
 - the role of management
 - basic concepts of management in general
 - understanding the inputs and the outputs
 - defining the problem — requirements analysis
 - designing the physical solution
 - describing the logical solution — functional and state-based design
 - effectiveness evaluation and decision making
 - requirements specification writing
 - system integration
 - verification
 - validation
 - specialty engineering
 - the role of cognitive systems engineering

4. Introduction to Project Management
 - relationship to management in general
 - the role of project management
 - basic concepts of project management
 - the PMBOK
 - concepts of lean
 - concepts of agile
 - project management certifications

5. Introduction to Engineering Management
 - relationship to project management
 - the role of engineering management
 - engineering the engineering system

6. Introduction to Systems Engineering Management
 - relationship to engineering management
 - the role of systems engineering management
 - systems engineering within three different business models
 - internal project
 - development under contract
 - product development in anticipation of sales
 - tenets of systems engineering management
 - systems engineering management and PRINCE2
 - systems engineering management and logistics support analysis (LSA)
 - systems engineering management and contract management
 - managing complexity
 - managing the development of safety-critical systems

7. Planning the Engineering Effort
 - styles of development and relationship to planning
 - waterfall, incremental, evolutionary, agile, lean, spiral
 - concurrent/simultaneous engineering/IPP
 - engineering for modifications
 - incorporation of risk and opportunity into planning
 - major planning artifacts
 - project (work) breakdown structure (PBS/WBS)
 - types of PBS
 - why the PBS is a foundation of effective engineering management
 - rules in preparing a PBS
 - relationship of the PBS to cost accounts
 - relationship of the PBS to work packages
 - PBS (WBS) development pitfalls and pointers
 - Workshop 2: Developing a PBS/WBS
 - systems engineering plans
 - scope planning
 - cost models, e.g. PRICE, SEER, COSYSMO
 - cost metrics
 - cost models, e.g. PRICE, SEER, COSYSMO
 - sequencing the engineering effort
 - Workshop 3: Decision Making in Engineering Planning
 - using verification and validation
 - verification and validation terms defined
 - verification requirements
 - methods of verification
 - verification design
 - methods of validation
 - technical reviews for verification, validation, assessment and control
 - requirements reviews
 - principles of design review
 - architectural design review (ADR)
 - detail design review (DDR)
 - functional reviews
 - system-wide design reviews
 - test readiness review (TRR)
 - requirements satisfaction audits (FCAs)
 - design description (BS-BS) audits (PCAs)
 - technical reviews and incremental builds
 - administration of technical reviews
 - customer involvement in technical reviews
 - pitfalls in conducting technical reviews
 - planning pitfalls and pointers

8. Organizing and Conducting the Engineering Effort
 - knowledge, skills and attitudes conductive to high performance in the nine systems engineering process areas
 - alternative organizational strategies — functional, matrix, project
 - types of organizational units: teams in general, IPTs, Skunk Works, process cells
 - inside integrated product teams (IPTs), and relationship to CE/IPP
 - when to use IPTs
 - IPT Membership
 - Workshop 5: IPT Membership
 - team processes
 - innovation
 - problem solving
 - decision making
 - implementation
 - communication
 - types of IPT
 - team size
 - achieving customer focus
 - challenges to IPT effectiveness
 - using product cells
 - using functional cells
 - keys to success
 - staffing the engineering organization
 - relationships to customer and supplier organizations
 - organizational pitfalls and pointers

9. Requirements Management
 - selecting requirements analysis processes
 - requirements traceability in requirements analysis
 - requirements traceability in design
 - traceability from goals
 - traceability from goals
9. Requirements Management (cont...)
- integration with test or verification traceability – VCVR/VCRM/RTEM etc.
- software tools supporting requirements management
- pitfalls and pointers in requirements management

10. Design Management
- selecting design processes
- managing for innovation
- managing design complexity
- avoiding under-engineering
- avoiding over-engineering
- design traceability
- pitfalls and pointers in design management

11. Configuration Management
- what is configuration?
- the concept and types of baseline
- CM standards - EIA, ISO, etc.
- the four fundamental CM activities
- examples of CM implementation
- pitfalls and pointers in configuration management

12. Interface Management
- objectives of interface management
- interface requirements
- interface design
- ensuring interface consistency
- managing evolution of interfaces in complex systems
- organizational aspects of interface management
- pitfalls and pointers in interface management

13. Management of Engineering Data
- objectives of data management
- data modeling
- tool data exchange
- data management vs configuration management
- pitfalls and pointers in data management

14. Knowledge Management
- objectives of knowledge management
- protection of new knowledge
- lessons learned
- communication of new knowledge
- use of external knowledge – intellectual property
- pitfalls and pointers in knowledge management

15. Engineering Specialty Integration (ESI)
- what makes an engineering specialty special?
- common engineering specialties
- a general approach to ESI
- organizational issues of ESI
- pitfalls & pointers in engineering specialty integration

16. Managing System Integration
- drivers to trouble-free system integration
- system integration planning
- role of integration testing
- responsibility of designers
- diagnosing the causes of problems
- incremental system integration
- integration test beds
- metrics for the balance of work in a system integration phase
- pitfalls & pointers in managing system integration

17. Managing Verification & Validation
- project-wide V&V
- requirements verification methods
- design verification methods
- system/subsystem verification requirements
- system/subsystem verification methods
- system/subsystem verification design
- system/subsystem verification traceability
- pitfalls and pointers in managing V&V

18. Managing the Development of Software-Intensive Systems
- special issues for software-intensive systems

- tracking systems engineering costs
- controlling systems engineering costs
- pitfalls and pointers in engineering cost management

20. Time Management
- tracking time performance
- controlling systems engineering schedule
- pitfalls and pointers in time management

- technical performance measurement
- technical progress meetings
- earned value management
- integrated performance measurement
- six-sigma revisited
- pitfalls and pointers in performance measurement

22. Risk and Opportunity Management
- the nature of risk
- components of risk
- the nature of opportunity
- the five key activities of risk management
- risk due to technology
- integrating consideration of risk and opportunity into every aspect of the systems engineering
- pitfalls and pointers in risk and opportunity management

23. Leading and Managing the Engineering Team
- Video: The Meerkat Way
- roles of leadership in complex projects
- difference between management and leadership
- power and the influencing of behavior
- situational aspects of leadership styles and follower readiness
- IPT accountabilities
- influences on IPT Performance
- key success factors of IPTs
- team-building and conflict resolution techniques
- successful motivation practices
- effective leader communications

24. Stakeholder Management
- determining stakeholder interests
- dealing with conflicting interests
- ensuring stakeholders have influence
- keeping stakeholders informed
- reporting to higher level management

25. Other Techniques for Controlling Outcomes
- qualification
- integrated software support to systems engineering and management

26. Release and Deployment Management
- release management
- deployment management
- post-implementation reviews

27. Project Closure
- archiving of engineering data
- maintenance of engineering data

28. Continuous Performance Improvement
- lessons learned
- ISO9000 Quality Management System
- Six Sigma Driving Improvement
- CMMI
- Pitfalls and Pointers in performance improvement

29. Professional Societies and Systems Engineering Education
- International Council on Systems Engineering (INCOSE)
- International Institute of Business Analysis (IIBA)
- national systems engineering societies
- other societies with formal systems engineering interest areas
- systems engineering in undergraduate education
- systems engineering in postgraduate education
- systems engineering certifications
- internal systems engineering education programs

30. In Closing